# INTERNATIONAL PERSPECTIVE ON COATED CONDUCTORS

U. (Balu) Balachandran Argonne National Laboratory



#### **Information Sources**

- 10th International Workshop on Critical Currents, Göttingen, Germany, June 2001.
- International Cryogenic Materials Conf., Madison, July 2001.
- European Conf. on Appl. Superconductivity, Copenhagen, Denmark, Aug. 2001.
- International Sym. on Superconductivity, Kobe, Japan, Sept. 2001.
- Materials Research Soc. Fall 2001 Meeting, Boston, Nov. 2001.
- Superconductor Week, 2001.
- Grant (EPRI), Suenaga (NBL), Shiohara (ISTEC), Izumi (ISTEC), Park (KERI, Korea).



# Japanese Organizations Supporting Superconductor R&D

- METI Ministry of Economy, Trade, and Industry
- NEDO New Energy and Industrial Technology Development Organization
- MEST Ministry of Education, Culture, Sports, Science and Technology
- MT Ministry of Land, Infrastructure and Transport
- MPHAPT Ministry of Public Management, Home Affairs, Post and Telecommunications



## FY2001 (April '01 - March '02) Budget for Superconductivity-related R&D in Four Ministries

(Unit: million yen)

| (Cirit. Illinion yel |                                                                                                                                                                        |                  |                               |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|--|--|
| Name of<br>Ministry  | Themes                                                                                                                                                                 | FY2000<br>Budget | FY2001<br>Requested<br>Budget |  |  |
| METI                 | R&D on superconducting generators, flywheel, AC power application, and R&D on fundamental technologies for superconducting applications                                | 8,025            | 9,093                         |  |  |
| MEST                 | Multi-core project for superconducting<br>material studies, nuclear fusion, etc.<br>Consolidation of superconductivity-<br>related research and educational<br>systems | 3,275            | 3,261                         |  |  |
| MT                   | MAGLEV                                                                                                                                                                 | 1,184            | 1,380                         |  |  |
| МРНАРТ               | Research on ultrahigh frequency and<br>high-speed circuit technology using<br>superconducting devices                                                                  | 111              | Budget<br>within<br>19,184    |  |  |
|                      | Total                                                                                                                                                                  | 12,594           | 13,733                        |  |  |









# ISTEC/SRL Funding Situation (Japanese Fiscal Year April 1- March 31)

- FY 2002 (starts April '02) is expected to get ≈ 10% increase.
- Fundamental Technologies for HTS Applications program will have 2.7 Billion Yen ( $\approx$  \$25 M).
- Current 5-yr program ends at the end of JFY '02 (March '03).
- ISTEC will propose to METI an extension to another 5-yr term.
  - will have an intermediate set of goals to fill in the first two years.





#### Major Results – Japan

- Textured Metallic Substrates
  - J<sub>c</sub> = 3 x 10<sup>5</sup> A/cm<sup>2</sup> on SOE (short sample)
  - $-J_c > 10^5 \text{ A/cm}^2 \text{ on 5-m Ag-Cu/Ag-Ni clad-type tape}$
- ISD
  - Produced 50-m long textured YSZ with CeO<sub>2</sub> cap-layer (ISD speed: 1.0 m/h)
  - $-J_c = 10^5 \text{ A/cm}^2 \text{ on } 10\text{-m long tape (PLD speed: } 1.2 \text{ m/h})$
- IBAD
  - 60-m long IBAD/Gd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> tape
     (IBAD speed: 1 m/h; in-plane FWHM = 16-18°)
  - $I_c$  = 50 A ( $J_c$  = 0.42 MA/cm<sup>2</sup>) on 9.6-m long 1-cm wide, 1.2  $\mu$ m thick tape (PLD speed: 1 m/h; in-plane FWHM = 9°)
  - $-I_c = 150A (J_c = 1.2 MA/cm^2)$  on 8-cm long tape.



### **Major Results**



Measuring Length ; 9.6m YBCO Thickness ; 1.2  $\mu$ m I<sub>c</sub> (77K, 0T) ; 50A J<sub>c</sub> (77K, 0T) ; 4.2x10<sup>5</sup> A/cm<sup>2</sup>







# Innovative Process for Superconducting Layer (MOD) H20 HF

- Major Results
  - ① Technology for High Quality Film Deposition;



Achieved High  $J_c$  in Combination of IBAD & TFA-MOD  $J_c = 2.5 \text{ MA/cm}^2 (0\text{T}), 0.17 \text{ MA/cm}^2 (5\text{T}) @77 \text{ K}$ 

② Process for Thick Film Deposition;

Improved I<sub>c</sub> & J<sub>c</sub> by means of Triple Coating (0.9 - 1μm) in TFA-MOD



- 3 Technology for Long Length Production
  - Deposition of 10 cm long tape by dip-coating & beed-coating





### Current Status & Future Prospect

| Present Status (FY2001)                                                                                                                                                                                                                                        | Goal of This Project (FY2002)                                                        | Future Targets for<br>Real Industrial Application |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------|--|
| <long length="" production=""> 1.Length: ≒10m 2. Jc (77K, 0T): &gt;10<sup>5</sup>A/orl 3 Production Rate: 1m/h <innovative processing=""> 1.Length: ≒10m 2.Jc: Jc (77K, 0T) ≒2.5x10<sup>6</sup>A/orl Jc (77K, 5T) ≒1.7x10<sup>5</sup>A/orl</innovative></long> | <pre><long length="" production=""> 1. Length: &gt;50m 2. Jc (77K, 0T):</long></pre> | Cape for Low Field Application                    |  |







| Projects of DAPAS                      |                                         |                         |  |  |  |  |  |
|----------------------------------------|-----------------------------------------|-------------------------|--|--|--|--|--|
| Main category                          | Projects                                | Institution             |  |  |  |  |  |
|                                        | Underground cable                       | KERI                    |  |  |  |  |  |
| Superconductivity                      | • Transformer                           | Korea Polytechnic Univ. |  |  |  |  |  |
| Power devices                          | • Fault-current limiter                 | Yonsei Univ./ KEPRI     |  |  |  |  |  |
|                                        | • Motor                                 | KERI                    |  |  |  |  |  |
| Superconductivity Digital devices      | ALU (Arithmetic Logic Unit)             | КОРТІ                   |  |  |  |  |  |
|                                        | HTS PIT wire                            | KERI / KIMM             |  |  |  |  |  |
| Superconductivity                      | HTS CC wire (PVD / MOCVD)               | KERI / KAERI            |  |  |  |  |  |
| Superconductivity<br>Common technology | • Cryogenic technologies                | Neuros                  |  |  |  |  |  |
|                                        | • Electric insulation technologies      | Gyeongsang Univ.        |  |  |  |  |  |
|                                        | • Fundamental technology of HTS coil    | KBSI                    |  |  |  |  |  |
|                                        | • (joint, AC loss, etc.)                |                         |  |  |  |  |  |
| A                                      | • Power system application technologies | KERI CAST               |  |  |  |  |  |

#### **Korean Institutes**

• KERI Korea Electrotechnology Research Institute

• KOPTI Korea Photonic Technology Institute

• KIMM Korea Institute of Machinery and Materials

• KAERI Korea Atomic Research Institute

• KBSI Korea Basic Science Institute



### Development Targets of Each Phase

| 1st Phase                                                                   | 2 <sup>nd</sup> Phase                                 |      | 3 <sup>rd</sup> Phase                                    |      |
|-----------------------------------------------------------------------------|-------------------------------------------------------|------|----------------------------------------------------------|------|
| 2001 2002                                                                   | 2004                                                  | 2005 | 2007                                                     | 2008 |
| 2003                                                                        | 2006                                                  |      | 2009                                                     | 2010 |
| Develop HTS wire and system technology suitable for use in electric devices | Develop and test<br>prototypes of<br>electric devices |      | Develop and test<br>commercial-scale<br>electric devices |      |

Devices: Transmission cable
Transformer
Fault-current limiter
Motor
Arithmetic logic unit







### EUROPEAN FRAMEWORK PROGRAM **PARTICIPANTS**

- U. Göttingen & ZFW
- IFW Dresden
- TU München
- Forschungszentrum Julich Oxford Instruments
- Siemens
- THEVA GmbH
- Inst. Tech. Phy. Karlsruhe MASPEC- Parma
- Europa Metalli SpA

- IRC Cambridge
- Imperial College
- U. Birmingham
- Atomic Institute Vienna
- U. Geneva
- Alcatel



#### Results of the European Program

- IBAD @ Göttingen
  - 17.5-m-long IBAD tape (in-plane FWHM = 11-13°; Dep. time: 14 hr)
  - 2-m-long tape with  $I_c$  = 142 A ( $J_c$  = 1.23 MA/cm<sup>2</sup>; 10-mm wide; 1.23  $\mu$ m thick YBCO)
  - YBCO deposition rate using HR-PLD is 40 nm m<sup>2</sup>/hr
  - Current processing time to make 100-m-long, 3.5-mm-wide YBCO tape is  $\approx$ 280 hr
  - Total processing time will be reduced to ≈40 hr in ≈2 yrs.
- ISD @ Munich
  - 35-m-long textured MgO (tape speed: 8 m/hr; 200-500 nm/min; 2 μm thick)
  - $J_c = 0.8 \text{ MA/cm}^2 (1.5 \text{ cm x } 0.5 \text{ cm}); 0.5 \text{ MA } (10\text{-cm x } 0.8 \text{ cm}); 0.1 \text{ MA } (1\text{-m x } 0.8 \text{ cm}).$



### Results of the European Program (cont.)

- Textured Ni-alloy tapes @ Dresden, Karlsruhe, Europa Metalli, THEVA, Munich, Cambridge
  - Controlled micro-alloying (0.1% Mo) prevents secondary recrystallization
  - High alloy concentration (13% Cr, 9% V) reduce grain boundary grooving but texture is imperfect
  - I<sub>c</sub> = 60 A in 9-mm wide, 12-cm long and 1.4 μm thick YBCO (J<sub>c</sub>  $\approx$  0.5 x 10<sup>6</sup> A/cm<sup>2</sup>)
- Textured Ag-alloy tapes @ Geneva, Oxford
  - J<sub>c</sub>  $\approx 10^5$  A/cm<sup>2</sup> in short samples
- YBCO deposition
  - PLD, magnetron sputtering, LPE, MOCVD, thermal coevaporation, aerosol.



#### 2001 Highlights – International

- 50-mm dia. YBCO films with  $J_c \approx 11 \text{ MA/cm}^2$  by TFA-MOD (ISTEC).
- 60-m long IBAD/Gd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> tape (Fujikura).
  - -9.6-m long tape with end-to-end  $I_c=50A$  ( $J_c=0.4$  MA/cm<sup>2</sup>).
  - 8-cm long tape with  $I_c = 150 \text{ A} (J_c = 1.2 \text{ MA/cm}^2)$ .
- 10-m long tape (by ISD) with  $J_c = 10^5 \text{ A/cm}^2 \text{ (Sumitom o)}$ .
- 5-m long tape (clad-type, metallic substrates) with  $\rm J_c > 10^5~A/cm^2$  (Furukawa).
- 2-m long tape (by IBAD) with  $I_c=142 \text{ A} (J_c=1.23 \text{ MA/cm}^2)$  (Göttingen).
  - 17.5 m long IBAD tape fabricated.
- 35-m long biaxially textured MgO layer by ISD (tape speed = 8 m/hr) on SS substrate (Munich).
- Korea had established a \$146M/10-yr superconductivity initiative.



#### **Summary**

- Japan has a large, broad-based, multiorganization effort.
  - Consortia type arrangement
  - Developments are shared among companies; makes it easier for rapid technical progress
  - Achievable targets are set
  - Technical feasibility is most important compared to performance & cost effectiveness
- Impressive IBAD, ISD, and YBCO results are obtained in the European program.
- Small prototype devices using CCs have been demonstrated in Europe and Japan.

